# Acta Crystallographica Section E <br> Structure Reports <br> Online <br> ISSN 1600-5368 <br> Scheelite-type sodium neodymium(III) ortho-oxidomolybdate(VI), $\mathrm{NaNd}\left[\mathrm{MoO}_{4}\right]_{2}$ 

Thomas Schleid and Ingo Hartenbach*<br>Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569<br>Stuttgart, Germany<br>Correspondence e-mail: hartenbach@iac.uni-stuttgart.de

Received 3 November 2011; accepted 7 November 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{Mo}-\mathrm{O})=0.002 \AA$; disorder in main residue; $R$ factor $=0.020 ; w R$ factor $=0.044$; data-to-parameter ratio $=13.1$.

Scheelite-type $\mathrm{NaNd}\left[\mathrm{MoO}_{4}\right]_{2}$ contains one crystallographic position (site symmetry $\overline{4}$ ) for the large cations, which is mixed-occupied by $\mathrm{Na}^{+}$and $\mathrm{Nd}^{3+}$ cations in a 1:1 molar ratio. Thus, both are surrounded by eight O atoms in the shape of a trigonal dodecahedron. Furthermore, the structure consists of crystallographically unique $\left[\mathrm{MoO}_{4}\right]^{2-}$ units (site symmetry $\overline{4}$ ) surrounded by eight sodium and neodymium cations, which are all vertex-attached. The polyhedra around the $\mathrm{Na}^{+} / \mathrm{Nd}^{3+}$ cations are connected to four others via common edges, building up a three-dimensional network in whose tetrahedral voids of O atoms the $\mathrm{Mo}^{6+}$ cations reside.

## Related literature

For isotypic $\mathrm{Na} \operatorname{Ln}\left[\mathrm{MoO}_{4}\right]_{2}$ structures, see: Stevens et al. (1991) and Teller (1992) for $L n=\mathrm{La}$; Teller (1992) for $L n=$ Ce; Zhao et al. (2010) for $L n=$ Er. For interpenetrating diamond-like networks, see: Schustereit et al. (2011). These were also obseverd in NaTl, see: Zintl \& Dullenkopf (1932).

## Experimental

## Crystal data

$\mathrm{NaNd}\left[\mathrm{MoO}_{4}\right]_{2}$

$$
M_{r}=487.11
$$

Tetragonal, $I 4_{1} / a$
$a=5.2871(3) \AA$
$c=11.5729(7) \AA$
$V=323.50(3) \AA^{3}$
$Z=2$

Nonius KappaCCD diffractometer Absorption correction: numerical ( $X$-SHAPE; Stoe \& Cie, 1995)
$T_{\min }=0.273, T_{\max }=0.434$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020 \quad 15$ parameters
$w R\left(F^{2}\right)=0.044$
$S=0.99$
196 reflections

Mo $K \alpha$ radiation
$\mu=11.79 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.11 \times 0.09 \times 0.07 \mathrm{~mm}$

1026 measured reflections 196 independent reflections 135 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.058$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}$

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

This work was supported by the State of Baden-Württemberg (Stuttgart) and the Deutsche Forschungsgemeinschaft (DFG; Frankfurt/Main) within the funding programme Open Access Publishing.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2019).

## References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Schustereit, T., Müller, S. L., Schleid, Th. \& Hartenbach, I. (2011). Crystals, Submitted.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stevens, S. B., Morrison, C. A., Allik, T. H., Rheingold, A. L. \& Haggerty, B. S. (1991). Phys. Rev. B Condens. Matter, 43, 7386-7394.

Stoe \& Cie (1995). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Teller, R. G. (1992). Acta Cryst. C48, 2101-2104.
Zhao, D., Li, F., Cheng, W. \& Zhang, H. (2010). Acta Cryst. E66, i 36.
Zintl, E. \& Dullenkopf, W. (1932). Z. Phys. Chem. B, 16, 195-205.

## supplementary materials

Acta Cryst. (2011). E67, i71 [ doi:10.1107/S1600536811046976]

## Scheelite-type sodium neodymium(III) ortho-oxidomolybdate(VI), $\mathbf{N a N d}\left[\mathrm{MoO}_{4}\right]_{2}$

## T. Schleid and I. Hartenbach

## Comment

Scheelite-type sodium lanthanide ortho-oxomolybdates of the formula $\mathrm{Na} L n\left[\mathrm{MoO}_{4}\right]_{2}$ are already known for $L n=\mathrm{La}, \mathrm{Ce}$, and Er (see related literature). The structure features $\mathrm{Na}^{+}$and $\mathrm{Nd}^{3+}$ cations together at the common Wyckoff position $4 b$, eightfold coordinated by $\mathrm{O}^{2-}$ anions in the shape of trigonal dodecahedra (Fig. 1). The $\mathrm{Na}: \mathrm{Nd}$ ratio was fixed at a molar ratio of 1:1 for maintaining electroneutrality. A similar surrounding is found for the cationic coordination around the crystallographically unique isolated ortho-oxomolybdate anions $\left[\mathrm{MoO}_{4}\right]^{2-}$ with the $\mathrm{Mo}^{6+}$ cations at the Wyckoff position $4 a$ (Fig. 2). The polyhedra around the $\mathrm{Na}^{+} / \mathrm{Nd}^{3+}$ cations are interconnected to four others via common edges building up a three-dimensional network, in whose voids of oxygen the $\mathrm{Mo}^{6+}$ cations are located (Fig. 3). Both the cations at the sites $4 a\left(\mathrm{Na}^{+}\right.$and $\mathrm{Nd}^{3+}$ in a $1: 1$ molar ratio) and $4 b\left(\mathrm{Mo}^{6+}\right)$ arrange themselves in two interpenetrating diamond-like networks (Schustereit et al., 2011) as in the case of NaTl (Zintl \& Dullenkopf, 1932).

## Experimental

Pale violet, coarse single crystals of Scheelite-type $\mathrm{NaNd}\left[\mathrm{MoO}_{4}\right]_{2}$ were obtained as by-product in an unsuccessful attempt to synthesize $\mathrm{NdF}\left[\mathrm{MoO}_{4}\right]$, using a mixture of $\mathrm{NdF}_{3}$ and $\mathrm{Na}_{2}\left[\mathrm{MoO}_{4}\right]$ in a $1: 1$ molar ratio, which was heated at $850^{\circ} \mathrm{C}$ for 7 days in an evacuated, sealed, fused-silica ampoule.

## Figures




Fig. 3. View at the crystal structure of Scheelite-type $\mathrm{NaNd}\left[\mathrm{MoO}_{4}\right]_{2}$ along [010] (slightly rotated) with special emphasis on the edge-connected oxygen polyhedra around the $\mathrm{Na}^{+}$and $\mathrm{Nd}^{3+}$ cations, respectively.

## sodium neodymium(III) ortho-oxidomolybdate(vi)

## Crystal data

$\mathrm{NaNd}\left[\mathrm{MoO}_{4}\right]_{2}$
$M_{r}=487.11$
Tetragonal, $I 4_{1} / a$
Hall symbol: -I 4ad
$a=5.2871$ (3) $\AA$
$c=11.5729$ (7) $\AA$
$V=323.50(3) \AA^{3}$
$Z=2$
$F(000)=438$

## Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
$\omega$ and $\varphi$ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1995)
$T_{\text {min }}=0.273, T_{\text {max }}=0.434$
1026 measured reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.044$
$S=0.99$
196 reflections
$D_{\mathrm{x}}=5.001 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 2325 reflections
$\theta=1.0-28.3^{\circ}$
$\mu=11.79 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Coarse transparent, pale violet
$0.11 \times 0.09 \times 0.07 \mathrm{~mm}$

196 independent reflections
135 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=4.2^{\circ}$
$h=-6 \rightarrow 6$
$k=-6 \rightarrow 6$
$l=-15 \rightarrow 15$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0102 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.45 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.42$ e $\AA^{-3}$

15 parameters
0 restraints

Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0092 (8)

## Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor wR and goodness of fit $S$ are based on $F^{2}$, conventional R-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{2}$ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ | Occ. $(<1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Na | 0.0000 | 0.2500 | 0.6250 | $0.0125(2)$ | 0.50 |
| Nd | 0.0000 | 0.2500 | 0.6250 | $0.0125(2)$ | 0.50 |
| Mo | 0.0000 | 0.2500 | 0.1250 | $0.0131(2)$ |  |
| O | $0.2406(3)$ | $0.3949(3)$ | $0.04140(14)$ | $0.0255(5)$ |  |

Atomic displacement parameters ( $\AA^{2}$ )

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Na | $0.0130(3)$ | $0.0130(3)$ | $0.0113(3)$ | 0.000 | 0.000 | 0.000 |
| Nd | $0.0130(3)$ | $0.0130(3)$ | $0.0113(3)$ | 0.000 | 0.000 | 0.000 |
| Mo | $0.0122(3)$ | $0.0122(3)$ | $0.0151(3)$ | 0.000 | 0.000 | 0.000 |
| O | $0.0298(10)$ | $0.0227(12)$ | $0.0239(9)$ | $-0.0002(8)$ | $0.0022(8)$ | $-0.0008(9)$ |

## Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Na}-\mathrm{O}^{\text {i }}$ | 2.4851 (15) | $\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 3.91907 (16) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Na}-\mathrm{O}^{\text {ii }}$ | 2.4851 (15) | $\mathrm{Na}-\mathrm{Na}^{\text {X }}$ | 3.91907 (16) |
| $\mathrm{Na}-\mathrm{O}^{\text {iii }}$ | 2.4851 (15) | $\mathrm{Mo}-\mathrm{O}^{\text {xi }}$ | 1.7725 (16) |
| $\mathrm{Na}-\mathrm{O}^{\text {iv }}$ | 2.4851 (15) | $\mathrm{Mo}-\mathrm{O}$ | 1.7725 (17) |
| $\mathrm{Na}-\mathrm{O}^{\text {v }}$ | 2.5182 (18) | $\mathrm{Mo}-\mathrm{O}^{\text {xii }}$ | 1.7725 (16) |
| $\mathrm{Na}-\mathrm{O}^{\text {vi }}$ | 2.5182 (18) | $\mathrm{Mo}-\mathrm{O}^{\text {xiii }}$ | 1.7725 (16) |
| $\mathrm{Na}-\mathrm{O}^{\text {vii }}$ | 2.5182 (18) | $\mathrm{O}-\mathrm{Nd}^{\text {iii }}$ | 2.4851 (15) |
| $\mathrm{Na}-\mathrm{O}^{\text {viii }}$ | 2.5182 (18) | $\mathrm{O}-\mathrm{Na}^{\text {iii }}$ | 2.4851 (15) |
| $\mathrm{Na}-\mathrm{Na}^{\text {ix }}$ | 3.91907 (17) | $\mathrm{O}-\mathrm{Na}^{\text {xiv }}$ | 2.5182 (18) |
| $\mathrm{Na}-\mathrm{Nd}{ }^{\text {ix }}$ | 3.91907 (17) | $\mathrm{O}-\mathrm{Nd}^{\text {xiv }}$ | 2.5182 (18) |
| $\mathrm{O}^{\mathrm{i}}-\mathrm{Na}-\mathrm{O}^{\mathrm{ii}}$ | 126.90 (5) | $\mathrm{O}^{\text {vi }}-\mathrm{Na}-\mathrm{Nd}^{\text {ix }}$ | 102.66 (4) |
| $\mathrm{O}^{\mathrm{i}}-\mathrm{Na}-\mathrm{O}^{\text {iii }}$ | 126.90 (5) | $\mathrm{O}^{\text {vii }}-\mathrm{Na}-\mathrm{Nd}^{\text {ix }}$ | 85.20 (3) |

$$
\begin{aligned}
& \mathrm{O}^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O}^{\mathrm{iii}} \\
& \mathrm{O}^{\mathrm{i}}-\mathrm{Na}-\mathrm{O}^{\mathrm{iv}} \\
& \mathrm{O}^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O}^{\text {iv }} \\
& \mathrm{O}^{\text {iii }}-\mathrm{Na}-\mathrm{O}^{\text {iv }} \\
& \mathrm{O}^{\mathrm{i}}-\mathrm{Na}-\mathrm{O}^{\mathrm{V}} \\
& \mathrm{O}^{\text {ii }}-\mathrm{Na}-\mathrm{O}^{\mathrm{v}} \\
& \mathrm{O}^{\text {iii }}-\mathrm{Na}-\mathrm{O}^{\mathrm{V}} \\
& \mathrm{O}^{\mathrm{iv}}-\mathrm{Na}-\mathrm{O}^{\mathrm{v}} \\
& \mathrm{O}^{\mathrm{i}}-\mathrm{Na}-\mathrm{O}^{\text {vi }} \\
& \mathrm{O}^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O}^{\mathrm{vi}} \\
& \mathrm{O}^{\text {iii }}-\mathrm{Na}-\mathrm{O}^{\text {vi }} \\
& \mathrm{O}^{\text {iv }}-\mathrm{Na}-\mathrm{O}^{\text {vi }} \\
& \mathrm{O}^{\mathrm{v}}-\mathrm{Na}-\mathrm{O}^{\text {vi }} \\
& \mathrm{O}^{\mathrm{i}}-\mathrm{Na}-\mathrm{O}^{\text {vii }} \\
& \mathrm{O}^{\text {ii }}-\mathrm{Na}-\mathrm{O}^{\text {vii }} \\
& \mathrm{O}^{\text {iii }}-\mathrm{Na}-\mathrm{O}^{\text {vii }} \\
& \mathrm{O}^{\text {iv }}-\mathrm{Na}-\mathrm{O}^{\text {vii }} \\
& \mathrm{O}^{\mathrm{v}}-\mathrm{Na}-\mathrm{O}^{\text {vii }} \\
& \mathrm{O}^{\text {vi }}-\mathrm{Na}-\mathrm{O}^{\text {vii }} \\
& \mathrm{O}^{\text {i }}-\mathrm{Na}-\mathrm{O}^{\text {viii }} \\
& \mathrm{O}^{\text {ii }-\mathrm{Na}-\mathrm{O}^{\text {viii }}} \\
& \mathrm{O}^{\text {iii }}-\mathrm{Na}-\mathrm{O}^{\text {viii }} \\
& \mathrm{O}^{\text {iv }}-\mathrm{Na}-\mathrm{O}^{\text {viii }} \\
& \mathrm{O}^{\mathrm{v}}-\mathrm{Na}-\mathrm{O}^{\text {viii }} \\
& \mathrm{O}^{\text {vi }}-\mathrm{Na}-\mathrm{O}^{\text {viii }} \\
& \mathrm{O}^{\text {vii }}-\mathrm{Na}-\mathrm{O}^{\text {viii }} \\
& \mathrm{O}-\mathrm{Na}-\mathrm{Na}^{\mathrm{ix}} \\
& \mathrm{O}^{\mathrm{ii}}-\mathrm{Na}-\mathrm{Na}^{\text {ix }} \\
& \mathrm{O}^{\mathrm{iii}}-\mathrm{Na}-\mathrm{Na}^{\mathrm{ix}} \\
& \mathrm{O}^{\mathrm{iv}}-\mathrm{Na}-\mathrm{Na}^{\text {ix }} \\
& \mathrm{O}^{\mathrm{v}}-\mathrm{Na}-\mathrm{Na}^{\text {ix }} \\
& \mathrm{O}^{\text {vi }}-\mathrm{Na}-\mathrm{Na}^{\text {ix }} \\
& \mathrm{O}^{\text {vii }}-\mathrm{Na}-\mathrm{Na}^{\text {ix }} \\
& \mathrm{O}^{\text {viii }}-\mathrm{Na}-\mathrm{Na}^{\text {ix }} \\
& \mathrm{O}^{\mathrm{i}}-\mathrm{Na}-\mathrm{Nd}^{\mathrm{ix}} \\
& \mathrm{O}^{\mathrm{ii}}-\mathrm{Na}-\mathrm{Nd}^{\text {ix }} \\
& \mathrm{O}^{\text {iii }}-\mathrm{Na}-\mathrm{Nd}^{\text {ix }} \\
& \mathrm{O}^{\text {iv }}-\mathrm{Na}-\mathrm{Nd}^{\text {ix }} \\
& \mathrm{O}^{\mathrm{v}}-\mathrm{Na}-\mathrm{Nd}^{\text {ix }}
\end{aligned}
$$

78.41 (7)
126.90 (5)
126.90 (5)
151.28 (7)
68.38 (4)
76.88 (6)
73.65 (3)
73.65 (3)
76.88 (6)
68.38 (4)
151.28 (7)
134.81 (8)
76.88 (6)
151.28 (7)
73.65 (3)
68.38 (4)
98.49 (3)
98.49 (3)
68.38 (4)
73.65 (3)
151.28 (7)
76.88 (6)
98.49 (3)
98.49 (3)
134.81 (8)
160.78 (4)
68.65 (4)
38.74 (4)
101.53 (4)
38.14 (3)
102.66 (4)
85.20 (3)
130.62 (4)
160.78 (4)
68.65 (4)
38.74 (4)
101.53 (4)
38.14 (3)

| $\mathrm{O}^{\text {viii }}-\mathrm{Na}-\mathrm{Nd}^{\text {ix }}$ | 130.62 (4) |
| :---: | :---: |
| $\mathrm{Na}^{\text {ix }}-\mathrm{Na}-\mathrm{Nd}^{\text {ix }}$ | 0.0 |
| $\mathrm{O}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 38.74 (4) |
| $\mathrm{O}^{\text {iii }}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 160.78 (4) |
| $\mathrm{O}^{\text {iiii }}-\mathrm{Na}-\mathrm{Nd}^{\text {X }}$ | 101.53 (4) |
| $\mathrm{O}^{\text {iv }}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 68.65 (4) |
| $\mathrm{O}^{\mathrm{v}}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 130.62 (4) |
| $\mathrm{O}^{\mathrm{vi}}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 85.20 (3) |
| $\mathrm{O}^{\text {vii }}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 38.14 (3) |
| $\mathrm{O}^{\text {viii }}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 102.66 (4) |
| $\mathrm{Na}^{\text {ix }}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 123.025 (3) |
| $\mathrm{Nd}{ }^{\text {ix }}-\mathrm{Na}-\mathrm{Nd}^{\text {x }}$ | 123.025 (3) |
| $\mathrm{O}-\mathrm{Na}-\mathrm{Na}^{\text {X }}$ | 38.74 (4) |
| $\mathrm{O}^{\text {iii }}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 160.78 (4) |
| $\mathrm{O}^{\text {iiii }}-\mathrm{Na}-\mathrm{Na}^{\text {X }}$ | 101.53 (4) |
| $\mathrm{O}^{\text {iv }}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 68.65 (4) |
| $\mathrm{O}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 130.62 (4) |
| $\mathrm{O}^{\mathrm{vi}}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 85.20 (3) |
| $\mathrm{O}^{\text {vii }}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 38.14 (3) |
| $\mathrm{O}^{\text {viii }}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 102.66 (4) |
| $\mathrm{Na}{ }^{\text {ix }}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 123.025 (3) |
| $\mathrm{Nd}{ }^{\text {ix }}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 123.025 (3) |
| $\mathrm{Nd}^{\mathrm{x}}-\mathrm{Na}-\mathrm{Na}^{\text {x }}$ | 0.0 |
| $\mathrm{O}^{\mathrm{xi}}-\mathrm{Mo}-\mathrm{O}$ | 113.83 (11) |
| $\mathrm{O}^{\text {xi }}-\mathrm{Mo}-\mathrm{O}^{\text {xii }}$ | 107.34 (5) |
| $\mathrm{O}-\mathrm{Mo}-\mathrm{O}^{\text {xii }}$ | 107.34 (5) |
| $\mathrm{O}^{\mathrm{xi}}-\mathrm{Mo}-\mathrm{O}^{\text {xiii }}$ | 107.34 (5) |
| $\mathrm{O}-\mathrm{Mo}-\mathrm{O}^{\text {xiii }}$ | 107.34 (5) |
| $\mathrm{O}^{\text {xii }}-\mathrm{Mo}-\mathrm{O}^{\text {xiii }}$ | 113.83 (11) |
| $\mathrm{Mo}-\mathrm{O}-\mathrm{Nd}^{\text {iii }}$ | 133.30 (9) |
| $\mathrm{Mo}-\mathrm{O}-\mathrm{Na}^{\text {iii }}$ | 133.30 (9) |
| $\mathrm{Nd}^{\text {iii }}-\mathrm{O}-\mathrm{Na}^{\text {iii }}$ | 0.0 |
| $\mathrm{Mo}-\mathrm{O}-\mathrm{Na}^{\text {xiv }}$ | 120.23 (8) |
| $\mathrm{Nd}{ }^{\text {iii }}-\mathrm{O}-\mathrm{Na}^{\text {xiv }}$ | 103.12 (6) |
| Na iii $-\mathrm{O}-\mathrm{Na}^{\text {xiv }}$ | 103.12 (6) |
| $\mathrm{Mo}-\mathrm{O}-\mathrm{Nd}^{\text {xiv }}$ | 120.23 (8) |
| $\mathrm{Nd}{ }^{\text {iii }}-\mathrm{O}-\mathrm{Nd}^{\text {xiv }}$ | 103.12 (6) |
| $\mathrm{Na}^{\text {iiii }}-\mathrm{O}-\mathrm{Nd}^{\text {xiv }}$ | 103.12 (6) |
| $\mathrm{Na}^{\text {xiv }}-\mathrm{O}-\mathrm{Nd}^{\text {xiv }}$ | 0.0 |

## sup-4

Symmetry codes: (i) $y-1 / 4,-x+3 / 4, z+3 / 4$; (ii) $x-1 / 2, y,-z+1 / 2$; (iii) $-x+1 / 2,-y+1 / 2,-z+1 / 2$; (iv) $-y+1 / 4, x-1 / 4, z+3 / 4$; (v) $x-1 / 2, y-1 /$ $2, z+1 / 2$; (vi) $-x+1 / 2,-y+1, z+1 / 2$; (vii) $-y+3 / 4, x-1 / 4,-z+3 / 4$; (viii) $y-3 / 4,-x+3 / 4,-z+3 / 4$; (ix) $-x,-y,-z+1$; (x) $-x+1 / 2,-y+1 / 2$, $-z+3 / 2$; (xi) $-x,-y+1 / 2, z$; (xii) $-y+1 / 4, x+1 / 4,-z+1 / 4$; (xiii) $y-1 / 4,-x+1 / 4,-z+1 / 4$; (xiv) $x+1 / 2, y+1 / 2, z-1 / 2$.

Fig. 1


Fig. 2


Fig. 3


